….. ….

Selasa, 17 April 2012

PERSAMAAN GARIS LURUS

1. Pengertian Gradien


Gradien suatu garis lurus adalah : Perbandingan antara komponen y (ordinat) dan komponen x (absis) antara dua titik pada garis itu. Gradien suatu garis biasanya dinotasikan dengan huruf kecil m. Perhatikan gambar di bawah ini !
komponen y dari garis AB = y2 - y1 ; komponen x dari garis AB = x2 - x1, maka :
Catatan : gradien sebuah garis sering disebut kecondongan sebuah garis atau koefisien arah sebuah garis.

1.1. Macam-macam gradien

a. Gradien bernilai positif

Garis l condong ke kanan , maka ml bernilai positif

b. Gradien bernilai negatif

Garis k condong ke kiri , maka mk bernilai negatif
Gradien dari sebuah persamaan garis
Jika sebuah garis mempunyai persamaan ax + by = c, maka gradien persamaan garis itu ialah :

c. Gradien garis melalui pangkal koordinat

Garis l melalui pangkal koordinat (0,0) maka
 
d. Gradien dua garis yang sejajar

Dua garis yang sejajar mempunyai gradien yang sama, garis l dan garis k sejajar, maka ml = mk
 
e. Gradien dua garis yang saling tegak lurus

Dua garis yang saling tegak lurus perkalian gradiennya adalah -1.Garis l dan garis k saling tegak lurus, maka ml x mk = -1.

1.2. Contoh-Contoh Soal

Contoh 1 :
Tentukanlah gradien garis :
  1. melalui titik P(2,-5) dan titik Q(-9,3)
  2. melalui pangkal koordinat dan titik A(-2,-8)

Penyelesaian :
a. Melalui titik P(2,-5) dan titik Q(-9,3)
P(2,-5) berarti x1 = 2 , y1 = -5
Q(-9,3) berarti x2 = -9 , y2 = 3
Jadi gradient melalui titik P(2,-5) dan titik Q(-9,3) adalah

b. Melalui pangkal koordinat dan titik A(-2,-8)
A(-2,-8) berarti x = -2 , y1 = -8
Jadi gradient melalui pangkal koordinat dan titik A(-2,-8) adalah 4


Contoh 2 :
Tentukanlah gradient sebuah garis :
  1. yang sejajar dengan garis 4x + 2y = 6
  2. yang tegak lurus dengan garis x - 4y = 10

Penyelesaian :
  1. Persamaan garis 4x + 2y = 6, maka a = 4, b = 2
Dua garis yang sejajar : m1 = m2 , maka m2 = - 2

  1. Persamaan garis x - 4y = 10, maka a = 1, b = -4
Dua garis yang tegak lurus : m1 x m2 = -1 , maka
 


2. Garis dengan gradien m dan melalui 1 titik
Perhatikan gambar dibawah ini !

Pada garis l terdapat titik A dengan koordinat (x1, y1) dan titik B dengan koordinat bebas, yaitu (x , y), bila gradien garis l dinyatakan dengan m, maka AB terdiri atas semua titik (x,y) dengan hubungan berikut ini :
y - y1 = m (x - x1)

Kesimpulan :
Persamaan garis dengan gradien m dan melalui sebuah titik (x1 , y1), adalah :
y - y1 = m (x - x1)
 
Contoh 1 :
Tentukanlah persamaan garis melalui titik A(-3,4) dan bergradien -2.

Penyelesaian :
Titik A(-3,4), berarti x­1 = -3 , y1 = 4 dan bergradien -2, berarti m = -2
Persamaan garis dengan gradient m dan melalui sebuah titik (x1,y1) adalah :
y - y1 = m ( x - x1 )
y - 4 = -2 {x - (-3)}
y - 4 = -2 (x + 3 )
y - 4 = -2 x - 6
y = -2x - 6 + 4
y = -2x - 2
Jadi persamaan garis melalui titik A(-3,4) dan bergradien -2 adalah y = -2x - 2

Contoh 2 :
Tentukanlah persamaan garis melalui titik B(6,2) dan sejajar dengan garis yang melalui titik P(2,-5) dan Q(-6, 3)

Penyelesaian :
Garis yang melalui titik P(2,-5) dan (-6, 3)
P(2,-5) berarti x1 = 2 , y1 = -5
Q(-6,3) berarti x2 = -6 , y2 = 3
Gradien yang melaui titik P(2,-5) dan Q(-6, 3) adalah mPQ
Misal mPQ = m1, maka m1 = m2 = -1 ( dua garis sejajar )
Titik B(6, 2), berarti x­1 = 6 , y1 = 2
Persamaan garis dengan gradien -1 dan melalui titik (6, 2) adalah :
y - y1 = m ( x - x1 )
y - 2 = -1 (x - 6)
y - 2 = -x + 6
y = -x + 6 + 2
y = -x + 8
 
Jadi persamaan garis melalui titik B(6,2) dan bergradien -1 adalah y = -x + 8


3. Persamaan garis yang melalui dua titik
Gradien garis yang melalui titik (x1, y1) dan (x2, y2) yaitu seperti pada gambar di bawah ini,

Selanjutnya dengan menggunakan rumus persamaan garis dengan gradient m dan melalui sebuah titik (x1 , y1), yaitu y - y1 = m ( x - x1 ) dapat diperoleh rumus berikut :

y - y1 = m ( x - x1 )
y - y1
y - y1 = y2 - y1

Kesimpulan :
Persamaan garis yang melalui titik (x1, y1) dan (x2, y2) yaitu :


Contoh 1
Perhatikan gambar di bawah ini !
Tentukanlah persamaan garis l !
 
Penyelesaian :
Garis l melalui titik A(3,4) dan titik B(5,8).
P(3,4) berarti x1 = 3 , y1 = 4
Q(5,8) berarti x2 = 5 , y2 = 8
Persamaan garis l yang melalui titik A(3,4) dan titik B(5,8) adalah :
2(y - 4) = 4(x - 3)
2y - 8 = 4x - 12
2y - 4x = 8 - 12
2y - 4x = -4
y - 2x = -2
Jadi persamaan garis l yang melalui titik A(3,4) dan titik B(5,8) adalah y - 2x = -2.
 

Tidak ada komentar:

Posting Komentar